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The viability of adapting the Timoshenko beam equations to a sandwich configuration
is considered. These equations are utilised for modal analysis of solid as well as sandwich
beams, including beams with a mass attached at the mid-span. Theoretical and
experimental results regarding beam frequencies and mode shapes are presented.
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1. INTRODUCTION

The flexural vibration of centrally loaded† beams is of particular interest in the steady
state measurement of damping since, in the forced vibration of beams, it may be
required that the latter is loaded at its mid-point by the drive and/or pick-up
mechanisms [1]. Of particular relevance in this respect are beams with sandwich
configuration [2]. Since these are light but very stiff in flexure, the drive mechanism
could be relatively heavy and this could considerably change the frequency and mode
shape of the beam.

A simple adaptation of the Timoshenko beam equations to a damped sandwich
configuration has been reported previously [3]. Whereas a considerable amount of
literature exists on Timoshenko beam theory, perhaps surprisingly, very few
experimental investigations of the analysis have been undertaken [4]. The aim of the
work reported here was to examine the viability of adapting the Timoshenko beam
equations to flexural vibration of sandwich beams, including beams with an attached
mass. To that end, a series of modal tests was conducted on both solid and sandwich
beams. The results were compared with those predicted by the Timoshenko equations
and the proposed adaptation of these equations for a sandwich configuration. As is
normally the practice in the measurement of material damping, only free-free beams
were considered.

2. GOVERNING EQUATIONS

The coupled equations with respect to the total lateral deflection, w, and the bending
slope, f, of a Timoshenko beam are given as [5]

EI
12f

1x2 + k01w
1x

−f1AG− rI
12f

1t2 =0, rA
12w
1t2 − k012w

1x2 −
1f

1x1AG=0, (1a, b)

†The terms ‘‘load’’ and ‘‘loaded’’ are somewhat loosely used here; but they are used for conciseness and refer
to a mass attached to the beam.
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where

w=W eivt, f=F eivt, (2, 3)

and W and F are normal functions of x. (A list of nomenclature is given in the Appendix.)
Eliminating, in turn, f and w from equations (1) yields the two uncoupled differential

equations of flexure [6]:

EI
14w
1x4 + rA

12w
1t2 −0rI+

ErI
kG 1 14w

1x2 1t2 +
r2I
kG

14w
1t4 =0, (4a)

EI
14f

1x4 + rA
12f

1t2 −0rI+
ErI
kG 1 14f

1x2 1t2 +
r2I
kG

14f

1t4 =0. (4b)

By substituting for f and w from equations (2) and (3) in equations (1) and (4), the latter
are respectively reduced to

s2 12F

1z2 − (1− b2r2s2)F+
1
L

1W
1z

=0,
12W
1z2 + b2s2W−L

1F

1z
=0, (5a, b)

14W
1z4 + b2(r2 + s2)

12W
1z2 − b2(1− b2r2s2)W=0 (6a),

14F

1z4 + b2(r2 + s2)
12F

1z2 − b2(1− b2r2s2)F=0, (6b)

where

z= x/L, b2 = rAL4v2/EI, r2 = I/AL2, s2 =EI/kAGL2 (7–10)

The solutions of equations (6) are

W=C1 cosh (baz)+C2 sinh (baz)+C3 cos (bbz)+C4 sin (bbz), (11a)

F=C'1 sinh (baz)+C'2 cosh (baz)+ (C'3 sin (bbz)+C'4 cos (bbz), (11b)

where

a, b=(1/z2){−, +(r2 + s2)+ [(r2 − s2)2 +4/b2]1/2}1/2 (12)

are roots of the biquadratic characteristic equation.
Only half of the coefficients Ci , C'i , (i=1, 2, 3, 4) are independent, since W and F are

coupled by equations (1). The dependent coefficients are found by substituting equations
(11) in either one of the coupled equations (5) and equating the coefficients of individual
hyperbolic and trigonometric terms. The following are found from equation (5b):

C'1 =
b
L 0a2 + s2

a 1C1, C'2 =
b
L 0a2 + s2

a 1C2, C'3 =−
b
L 0b2 − s2

b 1C3,

C'4 =
b
L 0b2 − s2

b 1C4. (13)
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Equations (11) and their first derivatives may now be written as

W=C1 cosh (baz)+C2 sinh (baz)+C3 cos (bbz)+C4 sin (bbz), (14a)

1W/1x=(b/L) [C1 a sinh (baz)+C2 a cosh (baz)−C3 b sin (bbz)+C4 b cos (bbz), (14b)

F=
b
L $a2 + s2

a
(C1 sinh (baz)+C2 cosh (baz))−

b2 − s2

b
(C3 sin (bbz)−C4 cos (bbz))%,

(14c)

1F/1x=(b/L)2[(a2 + s2) (C1 cosh (baz)+C2 sinh (baz))

−(b2 − s2) (C3 cos (bbz)+C4 sin (bbz))]. (14d)

3. CENTRALLY LOADED BEAM

A free–free Timoshenko beam carrying a point mass Mc at the mid-span (see Figure 1)
and vibrating in a symmetric normal mode is subjected to the following conditions:

(i) at x=0, EI
1F

1x
=0 (zero bending moment), so

1F

1x
=0, (15a)

(ii) at x=0, kAGg=0 (zero shearing force), so 01W
1x

−F1=0, (15b)

(iii) at x=L/2, F=0 (zero bending slope); (15c)

(iv) at x=L/2, kAGg−(Mc /2)v2W=0 (shear force induced due to Mc ),

so kAG(1W/1x−F)− (Mc /2)v2W=0, or kAG(1W/1x)− (Mc /2)v2W=0.

(15d)

Equations (15) respectively give the four equations

C1 (a2 + s2)−C3 (b2 − s2)=0, −C2 b+C4 a=0, (16a, b)

b(a2 + s2) (C1 sinh (H)+C2 cosh (H))− a(b2 − s2) (C3 sin (T)+C4 cos (T))=0, (16c)

(mL/b2s2) (b/L) [C1 a sinh (H)+C2 a cosh (H)−C3 b sin (T)+C4 b cos (T)]

−(Mc /2) [C1 cosh (H)+C2 sinh (H)+C3 cos (T)+C4 sin (T)]=0, (16d)

where H= ba/2 and T= bb/2.
Equations (16) may be written in the form [A]{Ci}=0, i=1, 2, 3, 4. For a non-trivial

solution, the determinant of the matrix of coefficients [A] is set to zero. This will give the

Figure 1. Centrally loaded beam.
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following frequency equation for the symmetric modes of the centrally loaded free–free
Timoshenko beam:

(a2 + s2)2 + (b2 − s2)2

b(a2 + s2) (b2 − s2)
cot (T)

Mc

2
−

(b2 − a2)
ab2 tanh (H)

Mc

2

+
(a2 + b2)

ab(a2 + s2)
m
b

cot (T) tanh (H)+
Mc

b sin (T) cosh (H)
+

(a2 + b2)
b2(b2 − s2)

m
b

=0. (17a)

For the anti-symmetric modes, the boundary conditions (i) and (ii) in equations (15) still
apply; but the boundary conditions (iii) and (iv) in those equations should be replaced by
their following counterparts:

(iii) at x=L/2, W=0 (zero lateral deflection);

(iv) at x=L/2,

EI(1F/1x)+ (J/2)v2(1W/1x)=0 (bending moment due to rotary inertia of mass).

By a procedure similar to that for the symmetric modes above, it can be shown that these
four boundary conditions will give the following frequency equation for the anti-symmetric
modes of the centrally loaded free-free Timoshenko beam:

(a/b) (a2 + b2) (a2 + s2) cot (T)− (b2 − s2) (a2 + b2) coth (H),

+01b1((a2 + s2)a2 + (b2 − s2)b2)
Jb

2mL2 cot (T) coth (H)

+01b1 ((a2 + s2)b2 + (b2 − s2)a2)
Jb

2mL2

1
sin (T) sinh (H)

+a(a2 − b2 +2s2)
Jb

2mL2 =0. (17b)

From equations (16), three of the constants Ci may be found in terms of the fourth one,
for example C3, giving, from equation (14a), the total lateral deflection, W, as

W=
b2 − s2

a2 + s2 C3 cosh (baz)+
P
b

C3 sinh (baz)+C3 cos (bbz)+
P
a

C3 sin (bbz), (18)

where

P=
(b2 − s2) (a sin (T)− b sinh (H))

(b2 − s2) cos (T)+ (a2 + s2) cosh (H)
. (19)

Now, if W is known at some positive value of x, then C3 can be found from equation
(18). Consequently, the constants C1, C2 and C4 will be known, and the quantities W,
1W/1x, F and 1F/1x can be found explicitly for any x.

The Timoshenko beam equations are readily simplified to the elementary
Bernoulli–Euler beam equations by setting to zero r and s, the rotary inertia and the shear
parameters.
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4. SANDWICH BEAMS

It has been suggested that by following a simple procedure, it should be possible to adapt
the Timoshenko beam equations for a symmetric skin-core-skin sandwich beam [3]. To
that end, the following usual assumptions are made [7–10]: (1) the in-plane modulus of
the core is negligible compared to that of the skin; (2) the transverse shear deflection of
the skin is negligible compared to that of the core. By virtue of the first assumption, the
bending stiffness EI in equations (8) and (10) will be that of the skins about the sandwich
mid-plane. In accordance with the Timoshenko beam equations, this implies that the skins
bend about the sandwich neutral axis and, therefore, undergo uniaxial tension or
compression. From assumption (2), the area A will be the cross-sectional area of the core
only. The rotary inertia parameter r, is now expressed in terms of Is , the effective moment
of inertia of the whole beam cross-section. Based on these assumptions, equations (8)–(10)
can be written as

b2 =mL3v2/(EI)s , r2 = Isc /Ac L2, s2 = (EI)s /(kAG)c L2, (20–22)

where suffixes s and c indicate skin and core respectively, and Isc is given by

Isc = Is +(rc /rs )Ic . (23)

4.1.    , k
The question arises as to the value of the factor k (equation (22)), following the above

procedure. The first of the above assumptions implies that the shear distribution over the
core cross-section is uniform [9], which in turns leads to a shear correction factor of unity.
However, the notion of unity of the factor k which follows the assumed uniformity of shear
distribution over the core cross-section would be somewhat misleading, since it ignores the
shearing stresses which must exist in the skins if the implication of shear discontinuity at
the interface is to be avoided [11]. On the other hand, if it is assumed that the shear stress
over the whole sandwich cross-section is uniform, then this implies that the shear stress
in the skin is of the same order as that in the core, regardless of the core shear rigidity.
As pointed out by Mead [12], this cannot be the case when the core is soft, in which case
the skins tend to bend independently of the core and about their own neutral axis.

An assumption which is implicit within the Timoshenko beam equations is that no
through-thickness normal strain in the beam occurs, such that the outmost planes, for
example, remain at the same fixed distance apart, regardless of the state of the stress. This
assumption is not exclusive to the Timoshenko equations as it also underlies the classical
theory of bending. Since, in a sandwich configuration, the core normally has a relatively
small elastic modulus, the assumption imposes a constraint on the deformation in that it
allows no localized bending of the skins which can be caused by a point load. It has been
shown, in the case of solid beams, that for a length along the beam approximately equal
to half of the depth of the beam, there exists an additional curvature due to a point load
[13]. Similarly, the state of stress within the skins is also assumed to be unaffected by any
transverse compressive stresses which may develop in the core.

Moreover, when the beam is subjected to dynamic loading, the rotary inertia effects
could become the determining factors in the shear distribution [14, 15], although this is
expected to occur only at high frequencies.

From the foregoing, it becomes apparent that an analytical determination of the shear
correction factor for a sandwich configuration, and in particular for point loaded beams,
not only is difficult but, strictly speaking, for any given beam and boundary conditions,
there exists a unique correction factor attributable to each frequency of the beam. This
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T 1

Specifications of solid beams

m L w h E
Designation Material (g) (mm) (mm) (mm) (GPa) n

AL1 Duralumin 257·2 600·0 12·65 12·65 67·34 0·35
AL2 Duralumin 292·1 600·5 19·00 9·50 69·88 0·35

could, at least in part, explain the fact that a wide range of values has been quoted in the
literature [3, 16].

In the present work, the authors propose to follow the practical approach suggested by
Mindlin and Goodman [14, 15], and use a correction factor which best fits the experimental
results at the high end of the frequency spectrum. The reason for using the high frequency
end is based on the argument that the shear distribution at higher frequencies is more
representative of the dynamic shear distribution in the beam. Clearly, a factor so found
would no longer be limited to representing the form of the shear distribution as underlies
the original Timoshenko theory, but rather would simply become an empirically obtained
correction factor.

At this point, the authors wish to acknowledge the worthy contribution to this work
made by Professor D. J. Mead. In a series of personal communications, he in
particular made some interesting points regarding the nature of a Timoshenko type
correction factor in a sandwich configuration. He suggests that the usual sandwich
assumptions will, in fact, result in a relationship for the factor k of the form
k=1+ t/c. Furthermore, he finds that with this value of k, the Timoshenko
predictions for the low and high mode frequencies of a simply supported sandwich
beam will agree with the predictions by the ‘‘exact’’ Ross–Kerwin–Ungar equations.
The suggested relationship for the factor k is in agreement with the empirical results
of the present work only in the limiting case when t/c:0 (section 5.1, Figure 11),
a fact that, he contends, can be attributed to the different nature of the deformation
of cross-section between the solid Timoshenko beams and the sandwich beams and,
therefore, the different nature of the rotary inertia parameter in each case. He,
therefore, suggests that within the context of the present theoretical basis, a rotary
inertia correction factor would also be in order for a sandwich beam, and that an
empirically obtained correction factor would, in effect, embody both the shear as well
as the rotary inertia correction factors.

5. EXPERIMENTAL PROCEDURE AND RESULTS

Solid beams of two different cross-sections were investigated. The specifications of was
these solid beams, including elastic properties, are given in Table 1. The Young’s modulus
was found from the resonance flexural frequency of slender beam samples, and the
Poisson’s ratio for aluminium was assumed to be 0·35.

The sandwich beams were prefabricated, symmetric, all-aluminium beams using
identical skin, core and adhesive. The specifications of the sandwich beams are given
in Table 2. The manufacturer’s quoted figure for the Young’s modulus of the skin
was used. The shear modulus of the honeycomb core was found by using the
method described in reference [17]. The shear modulus was measured along the
ribbon direction since this was the orientation of the core in all the sandwich beams
tested.
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T 2

Specifications of the sandwich beams

m L w t c Cell size* Es Gc

Designation (g) (mm) (mm) (mm) (mm) (mm) (GPa) (GPa)

SB1 72·2 400·0 40·0 0·57 12·5 6·25 69 0·285
SB2 87·2 400·0 40·0 0·57 25·0 6·25 69 0·285
SB3 67·4 270·0 39·5 0·57 33·5 6·25 69 0·285
SB4 120·9 400·0 40·0 0·57 50·0 6·25 69 0·285

†The cell size refers to the diameter of the inscribed circle of the hexagonal honeycomb cell.

5.1.  

The frequency tests were carried out to the limits of the sensitivity of the equipment
available. For greater accuracy, as far as it was possible the steady state technique was
used, with an electrodynamic shaker for excitation. Beyond the frequency limit of the
shaker (about 5 kHz), the transient technique was used, with particular care taken to tap
the sample on the centre so as not to excite any torsional frequencies. The test set-up for
the latter method is shown in Figure 2.

The frequency results are presented in Figures 3–11. For the solid beams, the predicted
frequencies were obtained for a shear correction factor of 0·82, a figure which results from
equating the first pure thickness-shear frequency of a Timoshenko beam with the first pure
shear mode according to the exact three-dimensional theory of elasticity, as proposed by
Mindlin [18]. For the sandwich beams, a value was selected for the correction factor which
would closely predict (within 20.5%) the highest test frequency for each beam, as
previously discussed. In both cases, the measured results are also compared with values
calculated on the basis of zero shear deformation (here, simply referred to as
‘‘Bernoulli–Euler’’ results). For both the solid as well as the sandwich beams, the frequency
results with unit correction factor are also included. These results, F(k=1), have also been
used to normalize the difference between the measured frequency and the frequency
predicted on the basis of a unit correction factor, namely

(F−F(k=1))/F(k=1). (24)

Furthermore, the frequencies are presented as functions of the mode number, this being
the only common factor as far as the elementary Bernoulli–Euler and the Timoshenko
theories are concerned.

Figure 2. Transient measurement of natural frequencies.
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For the solid beam results, generally good correlation exists between the frequencies
predicted by the Timoshenko theory and the test results. Moreover, it can be seen that
the accuracy of the prediction is maintained over the whole frequency range.

As can be seen (Figures 3 and 4), in the case of the solid unloaded beams, the
difference between the predicted frequencies and the test results for either value of k
is of any significance only at the highest frequencies. However, there does not seem
to be any particular trend in the predictions regarding the two values of the shear
factor. The observed deviations, in fact, are believed to be within the experimental
limitations. Also, certain assumptions have been made regarding the elastic properties.
A value for the Poisson’s ratio, for example, has been assumed, and the shear
modulus has been found by using this value. Furthermore, it is also likely that the
anti-clastic curvature in the beam will influence the frequency as the half-wavelength
approaches the beam width.

As expected, comapred to the results for the unloaded beams, there are some
discrepancies in the frequency results of the centrally loaded solid beam (Figures 5(a)
and (b)). The discrepancies are believed to have been caused by eccentricity of the
point mass (the mass on the Duralumin beam was in the shape of a cylinder with
a mass ratio to that of the beam of 0·38, and this was bonded along its length across
the width of the beam so that a point-loading condition could be achieved). It is also
noted that, with the in-plane rotary inertia effects of the centre mass neglected, the
anti-symmetric frequencies of the centrally loaded and those of the unloaded beam will
be the same since, in each case, the mid-span is laterally stationary. This can be
verified by comparing the anti-symmetric frequency results in Figures 4 and 5(b). Up
to the onset of the discrepancies (modes 2–12 (inclusive), Figure 5(b)), the two
frequencies are found to be almost identical.

As is evident from Figure 5, with the loaded beams the fundamental frequency is
generally underestimated by both values of k=1 and 0·82, a possible indication of
a difference in shear distribution, at least in the fundamental mode, between the
loaded and unloaded beams.

The shear effect in shear-soft sandwich beams is much more profound, as can be
seen by comparing the frequencies obtained by the elementary and the Timoshenko
theories in Figures 6–10. The shear modulus of the solid beam AL1 is about 93
times greater than that of the aluminium honeycomb sandwich beam SB1, so the
predicted frequencies of the latter are much more sensitive to the value of k which
is used. For example, at the highest frequency which could be measured for the
unloaded SB1 beam (mode 9, Figure 6), a change of k from 1·77 to 1·0 decreases
the predicted frequency by some 25% while, in a solid beam and at a comparable
mode number, a change of the same order in the value of k has almost no effect on
the frequency.

In the case of the sandwich beams, although a value for k was selected so as to
yield the highest test frequency the results, nevertheless, indicate a remarkable accuracy
of the predictions over the entire frequency range attainable, especially for thicker
beams (Figures 8–10). The frequencies of the centrally loaded beam (Figure 7) are also
accurately predicted, although slightly more scatter of results is observed here
(compare Figures 6 and 7).

The test results for the four unloaded beams varying only in the thickness of the
core (Figures 6, 8–10) suggest that k is sensitive to the core thickness. Using these
results, the optimun value of k has been considered as a function of the skin/core
thickness ratio in Figure 11. The results in this figure suggest that k varies linearly
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Figure 3. Frequency versus mode no. (test piece: AL1, square section Duralumin beam.) r, Timoshenko
(k=1·0); e, Timoshenko (k=0·82), +, Bernouilli–Euler; q, test; ——, Timoshenko (k=1·0).
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Figure 4. Frequency versus mode no. (test piece: AL2, rectangular section Duralumin beam.) r, Timoshenko
(k=1·0); e, Timoshenko (k=0·82), +, Bernouilli–Euler; q, test; ——, Timoshenko (k=1·0).
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Figure 5(a)—(caption overleaf )
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Figure 5. Frequency versus (a) symmetric modes and (b) antisymmetric modes. (test piece: centrally-loaded,
AL2, rectangular section Duralumin beam.) Key as Figure 3.
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Figure 6. Frequency versus mode no. (test piece: SB1, 0·5 in. thick M-Board sandwich beam). Key as Figure 3,
except e, Timoshenko (k=1·77).
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Figure 7. Frequency versus mode no. (test piece: centrally-loaded SB1, 0·5 in. thick M-Board sandwich beam.)
Key as Figure 6.



0
2

Mode no.

F
re

q
u

en
cy

 (
k

H
z)

24

26

0

0
2

Mode no.

F
–F

(k
=

1)
/F

(k
=

1)
 (

%
)

140

150

0

4 6

4 6

20

22

18

16

14

12

10

8

6

4

2

130

120

110

100

90

80

70

60

50

40

30

20

10

  /  433

Figure 8. Frequency versus mode no. (test piece: SB2, 1 in. thick M-Board sandwich beam). Key as Figure 6,
except e, Timoshenko (k=1·42).
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Figure 9. Frequency versus mode no. (test piece: SB3, 1·33 in. thick M-Board sandwich beam). Key as
Figure 8, except e, Timoshenko (k=1·25).
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Figure 10. Frequency versus mode no. (test piece: SB4, 2 in. thick M-Board sandwich beam.) Key as Figure 9,
except e, Timoshenko (k=1·20).
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with the ratio of skin/core thickness, and that a value of 1.0 for k occurs only for an
infinitely small skin/core thickness ratio.

5.2.  

A series of tests was conducted on the mode shape of the SB1 sandwich beam. All the
tests were carried out in the first mode, and the beam was supported on cotton threads
at the two nodal lines. Both unloaded and loaded beams were tested. In the latter case,
the beam was loaded at the mid-span with the drive and pick-up coil assembly (of 134 g
mass). In the case of the unloaded beams, an electrodynamic shaker was used for
excitation.

Originally, an image-shearing optical device was used to measure the displacement
amplitude [2]. This method, however, is only of limited accuracy given the minute
displacement amplitude in a sandwich. In the present work, laser interferometry was used
for that purpose. For each test, the displacement amplitude was measured at equal
intervals (10 mm) along the beam.

The flexural mode shape (lateral displacement amplitude) results are shown in
Figures 12–14, including both theoretical as well as experimental results. The
theoretical mode shapes have been normalized with respect to the end displacement
amplitude.

Two general trends become apparent from examining the mode shape results. First,
core compression seems to occur between the nodal lines, as is immediately apparent
in the case of the loaded beams (Figures 13 and 14). Closer examination of the mode
shape results of the unloaded beam (Figure 12) shows that core compression also occurs
in the unloaded beam, although here it is of a much more limited scale than the loaded
beams.

The second trend, which is observable particularly in Figure 14, is a change in the
curvature of flexure between the mid-span and the beam’s end. This change in curvature
is evident in both experimental as well as the Timoshenko results, but not in the shear–
rigid Bernoulli–Euler mode shape where, as expected, the curvature is that of normal
bending. In a shear–soft sandwich beam, there occurs a differential shearing along the
beam, being zero at the mid-span, and at a maximum at the end. This appears to
be responsible for the change in the curvature of flexure along the beam. The amount
of shearing in the overall deformation will depend on the thickness/length ratio, the
mode number and any load carried by the beam. In general, as the results in
Figures 12–14 also indicate, an increase in any of these factors will result in an increase
in the contribution of shear deformation, although the influence of added mass will be less
at higher modes.

6. CONCLUSIONS

On the basis of the Timoshenko beam equations, the theoretical frequencies and mode
shapes of both solid as well as sandwich beams were computed, and these were shown to
follow reasonably well the experimental results. In the case of solid beams, it was shown
that any difference in predictions due to using different proposed values of k is marginal
and well within the limitations of an experimental verification. In the case of the sandwich
beams, the factor k was chosen to fit the experimental data at the high frequency end,
whereupon close agreement was found between the experimental and theoretical
frequencies over the entire frequency range considered. It was concluded that the factor
k was a linear function of the relative thickness of the skin and of the core, and that in
practical situations its value was more than unity. Core compression between the nodal
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lines was evident in the sandwich beams, and this seemed to increase with increase in shear.
Otherwise, the trend of the experimental mode shapes correlated reasonably well with that
of a Timoshenko beam.
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APPENDIX: NOMENCLATURE

A cross-sectional area of solid beam
cross-sectional area of sandwich core

b frequency number
c thickness of sandwich core
E Young’s modulus
Es Young’s modulus of sandwich skin
F natural frequency
G shear modulus
Gc shear modulus of sandwich core
h depth of solid beam
I area moment of inertia
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J polar mass moment of inertia
k shear shape correction factor
L length of beam
Mc central mass attached to the beam
m mass of beam
r rotary inertia parameter
s shear flexibility parameter
t thickness of sandwich skin; time
W total lateral deflection
w time dependent total lateral deflection; width of beam
x distance along the beam
g shear rotation
F bending slope
f time dependent bending slope
r mass density
n Poisson’s ratio
v natural angular frequency


